Introduction to Optimization. Mock Exam 2022-2023.

Consider the problem (\mathcal{P}) of minimizing a continuous convex function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ over the affine subspace $V=\left\{x \in \mathbb{R}^{N}: A x=b\right\}$, for given $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^{M}$.

1. If ι_{V} denotes the indicator function of V, prove that $\partial \iota_{V}(x)=\operatorname{ran}\left(A^{*}\right)$ for each $x \in \mathbb{R}^{N}$. Suggestion: How is V related to $\operatorname{ker}(A)\left(=\operatorname{ran}\left(A^{*}\right)^{\perp}\right)$?
2. Use the first order optimality condition for (\mathcal{P}), obtained from Fermat's Rule, to show that \hat{x} is a solution of (\mathcal{P}) if, and only if, $A \hat{x}=b$ and there exists $\hat{y} \in \mathbb{R}^{M}$ such that $-A^{*} \hat{y} \in \partial f(\hat{x}) .{ }^{1}$ We say (\hat{x}, \hat{y}) is an optimal pair. Is this related to Lagrange multipliers?
3. Define the Lagrangian of the problem by $\mathcal{L}(x, y)=f(x)+y \cdot(A x-b)$, for $(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$. Show that if (\hat{x}, \hat{y}) is an optimal pair, then

$$
\mathcal{L}(\hat{x}, y) \leq \mathcal{L}(\hat{x}, \hat{y}) \leq \mathcal{L}(x, \hat{y})
$$

for all $(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$.

In what follows, we establish the convergence of the algorithm given by

$$
\left\{\begin{array}{l}
p_{k+1}=\operatorname{argmax}\left\{\mathcal{L}\left(x_{k}, y\right)-\frac{1}{2 \gamma}\left\|y-y_{k}\right\|^{2}: y \in \mathbb{R}^{M}\right\} \\
x_{k+1}=\operatorname{argmin}\left\{\mathcal{L}\left(x, p_{k+1}\right)+\frac{1}{2 \gamma}\left\|x-x_{k}\right\|^{2}: x \in \mathbb{R}^{N}\right\} \\
y_{k+1}=\operatorname{argmax}\left\{\mathcal{L}\left(x_{k+1}, y\right)-\frac{1}{2 \gamma}\left\|y-y_{k}\right\|^{2}: y \in \mathbb{R}^{M}\right\},
\end{array}\right.
$$

with $\gamma>0$, and starting from an initial point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$.
4. Write the optimality conditions corresponding to the three subiterations, in order to find closed formulas for p_{k+1} and y_{k+1}, and to express x_{k+1} in terms of a proximal step.

In parts 5,6 and $7,(\hat{x}, \hat{y})$ is any optimal pair.
5. Prove that

$$
\begin{aligned}
2 \gamma\left(\mathcal{L}\left(x_{k+1}, p_{k+1}\right)-\mathcal{L}\left(\hat{x}, p_{k+1}\right)\right) & \leq\left\|x_{k}-\hat{x}\right\|^{2}-\left\|x_{k+1}-\hat{x}\right\|^{2}-\left\|x_{k+1}-x_{k}\right\|^{2} \\
2 \gamma\left(\mathcal{L}\left(x_{k+1}, \hat{y}\right)-\mathcal{L}\left(x_{k+1}, y_{k+1}\right)\right) & \leq\left\|y_{k}-\hat{x}\right\|^{2}-\left\|y_{k+1}-\hat{x}\right\|^{2}-\left\|y_{k+1}-y_{k}\right\|^{2} \\
2 \gamma\left(\mathcal{L}\left(x_{k+1}, y_{k+1}\right)-\mathcal{L}\left(x_{k+1}, p_{k+1}\right)\right) & \leq \delta\left\|y_{k+1}-p_{k+1}\right\|^{2}+\frac{1}{\delta}\left\|y_{k+1}-y_{k}\right\|^{2}
\end{aligned}
$$

for every $k \geq 0$ and $\delta>0$. Suggestion: Remember (1) the definition of subgradient, and (2) that $2 a b \leq \delta a^{2}+\frac{1}{\delta} b^{2}$ for $a, b, \delta>0$.
6. Show that if $\gamma\|A\|<1$, there is $\varepsilon>0$ such that

$$
\left\|x_{k+1}-\hat{x}\right\|^{2}+\left\|y_{k+1}-\hat{y}\right\|^{2}+2 \gamma\left(\mathcal{L}\left(x_{k+1}, \hat{y}\right)-\mathcal{L}\left(\hat{x}, p_{k+1}\right)\right)+\varepsilon\left\|A x_{k+1}-b\right\|^{2} \leq\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}
$$

for every $k \geq 0$.
7. Deduce that $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=f(\hat{x})$ and $\lim _{k \rightarrow \infty} A x_{k}=b$.
8. Prove that $\left(x_{k}, y_{k}\right)$ converges to an optimal pair. Suggestion: Verify that for every optimal pair $(\hat{x}, \hat{y}), \lim _{k \rightarrow \infty}\left[\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}\right]$ exists.

[^0]
[^0]: ${ }^{1}$ Since f is continuous, we have $\partial\left(f+\iota_{V}\right)=\partial f+\partial \iota_{V}$. You do not need to prove this.

