Introduction to Optimization. Mock Exam 2022-2023.

Consider the problem (\mathcal{P}) of minimizing a continuous convex function $f : \mathbb{R}^N \to \mathbb{R}$ over the affine subspace $V = \{x \in \mathbb{R}^N : Ax = b\}$, for given $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^M$.

- 1. If ι_V denotes the indicator function of V, prove that $\partial \iota_V(x) = \operatorname{ran}(A^*)$ for each $x \in \mathbb{R}^N$. Suggestion: How is V related to $\ker(A) (= \operatorname{ran}(A^*)^{\perp})$?
- 2. Use the first order optimality condition for (\mathcal{P}) , obtained from Fermat's Rule, to show that \hat{x} is a solution of (\mathcal{P}) if, and only if, $A\hat{x} = b$ and there exists $\hat{y} \in \mathbb{R}^M$ such that $-A^*\hat{y} \in \partial f(\hat{x})$.¹ We say (\hat{x}, \hat{y}) is an *optimal pair*. Is this related to Lagrange multipliers?
- 3. Define the Lagrangian of the problem by $\mathcal{L}(x, y) = f(x) + y \cdot (Ax b)$, for $(x, y) \in \mathbb{R}^N \times \mathbb{R}^M$. Show that if (\hat{x}, \hat{y}) is an optimal pair, then

$$\mathcal{L}(\hat{x}, y) \le \mathcal{L}(\hat{x}, \hat{y}) \le \mathcal{L}(x, \hat{y})$$

for all $(x, y) \in \mathbb{R}^N \times \mathbb{R}^M$.

In what follows, we establish the convergence of the algorithm given by

$$p_{k+1} = \operatorname{argmax} \left\{ \mathcal{L}(x_k, y) - \frac{1}{2\gamma} \|y - y_k\|^2 : y \in \mathbb{R}^M \right\}$$

$$x_{k+1} = \operatorname{argmin} \left\{ \mathcal{L}(x, p_{k+1}) + \frac{1}{2\gamma} \|x - x_k\|^2 : x \in \mathbb{R}^N \right\}$$

$$y_{k+1} = \operatorname{argmax} \left\{ \mathcal{L}(x_{k+1}, y) - \frac{1}{2\gamma} \|y - y_k\|^2 : y \in \mathbb{R}^M \right\},$$

with $\gamma > 0$, and starting from an initial point $(x_0, y_0) \in \mathbb{R}^N \times \mathbb{R}^M$.

4. Write the optimality conditions corresponding to the three subiterations, in order to find closed formulas for p_{k+1} and y_{k+1} , and to express x_{k+1} in terms of a proximal step.

In parts 5, 6 and 7, (\hat{x}, \hat{y}) is any optimal pair.

5. Prove that

$$2\gamma \left(\mathcal{L}(x_{k+1}, p_{k+1}) - \mathcal{L}(\hat{x}, p_{k+1}) \right) \leq \|x_k - \hat{x}\|^2 - \|x_{k+1} - \hat{x}\|^2 - \|x_{k+1} - x_k\|^2$$

$$2\gamma \left(\mathcal{L}(x_{k+1}, \hat{y}) - \mathcal{L}(x_{k+1}, y_{k+1}) \right) \leq \|y_k - \hat{x}\|^2 - \|y_{k+1} - \hat{x}\|^2 - \|y_{k+1} - y_k\|^2$$

$$2\gamma \left(\mathcal{L}(x_{k+1}, y_{k+1}) - \mathcal{L}(x_{k+1}, p_{k+1}) \right) \leq \delta \|y_{k+1} - p_{k+1}\|^2 + \frac{1}{\delta} \|y_{k+1} - y_k\|^2$$

for every $k \ge 0$ and $\delta > 0$. Suggestion: Remember (1) the definition of subgradient, and (2) that $2ab \le \delta a^2 + \frac{1}{\delta}b^2$ for $a, b, \delta > 0$.

6. Show that if $\gamma \|A\| < 1$, there is $\varepsilon > 0$ such that

$$\|x_{k+1} - \hat{x}\|^2 + \|y_{k+1} - \hat{y}\|^2 + 2\gamma \left(\mathcal{L}(x_{k+1}, \hat{y}) - \mathcal{L}(\hat{x}, p_{k+1})\right) + \varepsilon \|Ax_{k+1} - b\|^2 \le \|x_k - \hat{x}\|^2 + \|y_k - \hat{y}\|^2$$

for every $k \ge 0$.

- 7. Deduce that $\lim_{k \to \infty} f(x_k) = f(\hat{x})$ and $\lim_{k \to \infty} Ax_k = b$.
- 8. Prove that (x_k, y_k) converges to an optimal pair. Suggestion: Verify that for every optimal pair (\hat{x}, \hat{y}) , $\lim_{k \to \infty} \left[||x_k \hat{x}||^2 + ||y_k \hat{y}||^2 \right]$ exists.

¹Since f is continuous, we have $\partial(f + \iota_V) = \partial f + \partial \iota_V$. You do not need to prove this.